Indestructibility of the tree property over models of PFA

Šárka Stejskalová

Department of Logic, Charles University Institute of Mathematics, Czech Academy of Sciences

logika.ff.cuni.cz/sarka

January 30, 2022

Recall the following definition:

Definition

Let κ be a regular cardinal. A κ -tree is called *Aronszajn* if it has no cofinal branch. The tree property holds at κ , TP(κ), if there are no κ -Aronszajn trees.

The tree property is a compactness property which has been recently extensively studied. It is known that together with inaccessibility of κ it characterizes weak compactness. It is open whether the tree property can hold on all regular cardinals $> \omega_1$, but there are methods how to get the tree property at infinitely many successive cardinals.

Some basic properties:

- $\mathsf{TP}(\omega)$ and $\neg \mathsf{TP}(\omega_1)$.
- (Specker) If $\kappa^{<\kappa} = \kappa$ then there exists a κ^+ -Aronszajn tree. Therefore $\neg \text{TP}(\kappa^+)$.
 - If GCH then $\neg \mathsf{TP}(\kappa^{++})$ for all $\kappa \geq \omega$.

• PFA implies $TP(\omega_2)$.

Definition

- Let θ be a cardinal, and let $M \prec H(\theta)$ and $z \in M$.
 - **1** A set $d \subseteq z$ is *M*-approximated if $d \cap a \in M$ for all countable $a \in M$.
 - 2 A set $d \subseteq z$ is *M*-guessed if there is an $e \in M$ such that $d \cap M = e \cap M$.
 - 3 M is a guessing model if for every z ∈ M, if d ⊆ z is M-approximated, it is M-guessed.

Definition

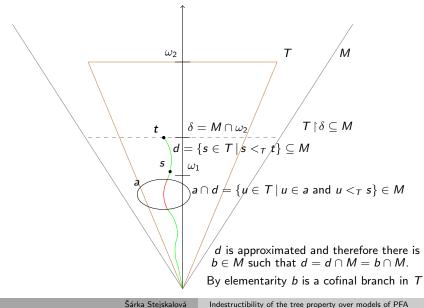
We say that the *Guessing model principle* holds at ω_2 , and write GMP(ω_2), if the set

 $\{M \prec H(\theta) \mid |M| < \omega_2 \text{ and } M \text{ is a guessing model}\}\$

is stationary in $\mathcal{P}_{\omega_2}H(\theta)$ for every $\theta \geq \omega_2$

Viale and Weiss in [4] proved following: PFA implies $GMP(\omega_2)$. Note that $GMP(\omega_2)$ implies the tree property at ω_2 . $GMP(\omega_2)$ implies $TP(\omega_2)$

 $M \prec H(\omega_3)$ is a guessing model such that $T \in M$, $|M| = \omega_1$ and $\omega_1 \subseteq M$



Theorem (Honzik, S., [1])

GMP(ω_2), and hence PFA, implies that the tree property at ω_2 is indestructible under the single Cohen forcing at ω , i.e. if V is a transitive model satisfying GMP(ω_2) and G is Add(ω , 1)-generic over V, then V[G] satisfies the tree property at ω_2 .

Remark: It seems to be a hard question in general to determine whether a small forcing such as the Cohen forcing $Add(\omega, 1)$ can add a large Aronszajn tree. It can be shown for many specific models that it cannot, but in general the question is wide open (no counter-example is known so far). Our results says that no counter-example can be found for models of PFA.

In order to show that an ω_2 -Aronszajn trees cannot exist in a generic extension $V[{\rm Add}(\omega,1)]$, we will work in the ground model and work with a system derived from an ${\rm Add}(\omega,1)$ -name for an ω_2 -tree.

Well-behaved strong (ω_1, ω_2) -systems

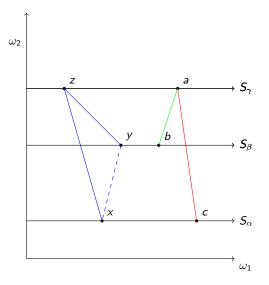
Let $D \subseteq \omega_2$ be unbounded in ω_2 . For each $\alpha \in D$, let $S_\alpha \subseteq \{\alpha\} \times \omega_1$ and let $S = \bigcup_{\alpha \in D} S_\alpha$. Moreover, let I be an index set of cardinality at most ω and $\mathcal{R} = \{<_i \mid i \in I\}$ a collection of binary relations on S. We say that $\langle S, \mathcal{R} \rangle$ is an (ω_1, ω_2) -system if the following hold for some D:

- **1** For each $i \in I$, $<_i$ is irreflexive and transitive.
- 2 For each $i \in I$, $\alpha, \beta \in D$ and $\gamma, \delta < \omega_1$; if $(\alpha, \gamma) <_i (\beta, \delta)$ then $\alpha < \beta$.
- 3 For each $i \in I$, and $\alpha < \beta < \gamma$, $x \in S_{\alpha}$, $y \in S_{\beta}$ and $z \in S_{\gamma}$, if $x <_i z$ and $y <_i z$, then $x <_i y$.
- ④ For all $\alpha < \beta$ there are $y \in S_\beta$ and $x \in S_\alpha$ and $i \in I$ such that x <_i y.

We call a (ω_1, ω_2) -system $\langle S, \mathcal{R} \rangle$ a *strong* (ω_1, ω_2) -system if the following strengthening of item (iv) holds:

So For all $\alpha < \beta$ and for every y ∈ S_β there are x ∈ S_α and i ∈ I such that x <_i y.

Well-behaved strong (ω_1, ω_2) -systems



A branch of the system is a subset B of S such that for some $i \in I$, and for all $a \neq b \in B$, $a <_i b$ or $b <_i a$. A branch B is *cofinal* if for each $\alpha < \omega_2$ there are $\beta \ge \alpha$ and $b \in B$ on level β .

Let $Add(\omega, 1)$ forces that \dot{T} is an ω_2 -tree. The derived system has domain $\omega_1 \times \omega_2$, and is equipped with binary relations $<_p$ for $p \in Add(\omega, 1)$, where

$$x <_{\rho} y \Leftrightarrow \rho \Vdash x \stackrel{\cdot}{<}_{\tau} y. \tag{1}$$

Recall that we want to prove that the tree property at ω_2 is indestructible by Cohen forcing Add $(\omega, 1)$ over transitive models of GMP (ω_2) .

- Assume for contradiction that \dot{T} is forced by the weakest condition in Add(ω , 1) to be an ω_2 -tree.
- Let $S(\dot{T})$ be the derived system with respect to \dot{T}
- Similarly to the proof that GMP(ω₂) implies that every ω₂-tree has a cofinal branch, one can show that under GMP(ω₂) every well-behaved strong (ω₁, ω₂)-system has a cofinal branch; i.e. there is a cofinal branch B in S(T) with respect to <_p for some p ∈ Add(ω, 1)
- If G be a Add(ω, 1)-generic containing p. Then B is a cofinal branch in T^G.

$\sigma\text{-centered}$ forcing

• Note that derived systems can be naturally used with σ -centered forcings: Let \mathbb{P} be a σ -centered forcing. Let us write $\mathbb{P} = \bigcup_{n < \omega} \mathbb{P}_n$. Then we can define the relations $<_n$ for $n < \omega$, where

$$x <_n y \Leftrightarrow (\exists p \in \mathbb{P}_n) p \Vdash x <_T y.$$
 (2)

- Let us say a few words about obstacles to generalising the argument to σ -centered forcings: Suppose $S(\dot{T})$ is the derived system with respect to some σ -centered forcing \mathbb{P} .
- Arguing as we did, one can show that there is a cofinal branch B in $S(\dot{T})$ with respect to some $<_n$, $n < \omega$. However the proof that B is a cofinal branch in the generic extension may fail because if G is \mathbb{P} -generic, then it may be false that for all (or sufficiently many) x, y in B there is some $p \in G \cap \mathbb{P}_n$ forcing $x <_{\dot{T}} y$.

Theorem (Honzik, S., [1])

GMP(ω_2), and hence also PFA, implies that the negation of the weak Kurepa Hypothesis is indestructible under any σ -centered forcing, i.e. if V is a transitive model satisfying GMP(ω_2), \mathbb{P} is σ -centered, and G is \mathbb{P} -generic over V, then V[G] satisfies the negation of the weak Kurepa Hypothesis at ω_1 .

O ver specific generic extensions, indestructibility is easier to verify. Let us review some results for the Mitchell extension (forcing with $\mathbb{M}(\omega, \kappa)$, where κ is weakly compact):

- (Todorcevic, [3]) Todorcevic showed in [3] that the tree property at ω₂ in the Mitchell model V[M(ω, κ)] is indestructible under any finite-support iteration of ccc forcing notions which have size less than ω₂ and do not add a new cofinal branch to ω₁-trees.
- (Honzik, S., [2]) The tree property at ω₂ in V[M(ω, κ)] is indestructible under all ccc forcings which live in V[Add(ω, κ)].

Some open questions:

- Is the tree property at ω₂ indestructible under all σ-centered forcings over every model which satisfies GMP(ω₂) or PFA?
- ② Or more modestly, is the tree property at ω₂ indestructible under Add(ω, ω₁) under the same assumptions?
- 3 Can our result about the Mitchell model be extended to all ccc forcing notions in $V[\mathbb{M}(\omega, \kappa)]$? Or more generally, is there a model V^* over which $TP(\omega_2)$ is indestructible under all ccc forcings?
- ^(a) More specifically, neither our result nor Todorcevic's result applies to an iteration of ω_1 -Suslin trees of length ω_2 . Can either of these results be extended to this forcing?

- Radek Honzik and Šárka Stejskalová, Indestructibility of some compactness principles over models of PFA and GMP, submitted.
- Junction Symbolic Logic 85 (2020), no. 1, 467–485.
- Stevo Todorcevic, Some consequences of MA + ¬wKH, Topology and its Applications 12 (1981), no. 2, 187–202.
- Matteo Viale and Christoph Weiss, On the consistency strength of the proper forcing axiom, Advances in Mathematics 228 (2011), 2672–2687.